The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.
نویسندگان
چکیده
We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.
منابع مشابه
Enhanced Light Emission due to Formation of Semi-polar InGaN/GaN Multi-quantum Wells
InGaN/GaN multi-quantum wells (MQWs) are grown on (0001) sapphire substrates by metal organic chemical vapor deposition (MOCVD) with special growth parameters to form V-shaped pits simultaneously. Measurements by atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrate the formation of MQWs on both (0001) and ([Formula: see text]) side surface of the V-shaped pits. T...
متن کاملSpectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates
متن کامل
Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering
To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...
متن کاملInvestigation on Polarization Induced Electro-Optical Property of GaN LED Using TEM-EBIC Combined with Cathodoluminescence
Strained InGaN layers grown on a c-plane sapphire is known to have strong spontaneous and piezoelectric polarization field, where the discontinuity of polarization at heterojunction is to induce bounded surface charges [1]. This polarization-related phenomenon can affect the internal electric field of active region and induce the quantum-confined stark effect (QCSE) at quantum well. QCSE result...
متن کاملProcessing of Semipolar and Nonpolar InGaN Based Laser Diodes
Laser diodes (LDs) based on InGaN quantum well (QW) structures emitting in the blue to green spectral region are of great interest for applications ranging from spectroscopy to laser projectors for mobile devices. Whereas LDs in the blue spectral region are available commercially, the so-called “green gap” is just at the point of being bridged. The necessity of creating InGaN QWs with high indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultramicroscopy
دوره 176 شماره
صفحات -
تاریخ انتشار 2017